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Abstract Linear (and other types of) regression are often used in what is referred to as 
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determine the relative importance of various sub-components of the product or service in 
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to mitigate this issue. This paper shows that Shapley-value may even have benefts in 
conditions of mild collinearity. The study compares linear regression, random forests and 
gradient boosting with the Shapley-value approach to regression and shows that the 
results are more consistent with bivariate correlations. However, Shapley-value regression 
does result in a small decrease in k-fold validation results. 
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INTRODUCTION 
Customer satisfaction has decreased, and 
your firm has decided to conduct a customer 
satisfaction survey. An overall satisfaction 
measure is included along with various 
questions that pertain to satisfaction with 
three sub-elements of the product or 
service: satisfaction with overall technical 
support (V1); satisfaction with the product’s 
functionality (V2); and satisfaction with the 
instruction manual (V3). Data are collected 
for each of these measures, as well as overall 
satisfaction, using a ten-point rating scale 
ranging from 1 (totally not satisfied) to 
10 (totally satisfied). To determine how 
the three variables are affecting overall 
satisfaction, a linear regression analysis is 
conducted using overall satisfaction as the 
dependent variable and the various sub-
elements as predictors (ie independent 
variables). The analysis will yield a regression 
coefficient for each element. The results can 
be used to predict the overall satisfaction 
scores. So far so good: linear regression — 
often referred to as driver modelling (or 
key-driver analysis) — is frequently used 
in commercial satisfaction research in this 
manner. In practice, driver models are used 
to model overall satisfaction, but they can 
also model other variables such as overall 
value and likelihood to recommend. The 
objectives of such key-driver studies are all 
very similar, in that they seek to improve the 
performance of the dependent variable. A 
frequent challenge presents itself, however: 
it is not uncommon to have 20 or more 
predictors. This means management will 
have to prioritise, as it is not possible to 
improve this many areas simultaneously. 
To help with prioritising improvements, 
regression results can be used to determine 
the relative importance of each element. 
In other words, it is possible to select the 
most important variables and try to improve 
performance on these, using the predictive 
model to set overall satisfaction goals. This is 
a straightforward approach. 

The application of linear (or logistic) 
regression models in such driver-modelling 
studies, however, has several shortcomings.1,2 

First, a regression model is optimised for 
prediction not relative importance. That 
is, if two highly correlated variables both 
explain variance in the dependent variable 
in some similar way, then once one of them 
has entered the model (ie contributed its 
explaining power) there is not much to be 
added by the second independent variable. 
This leads to the first variable being large, 
and likely statistically significant, whereas 
for the second variable the coefficient will 
be much smaller, may have a negative sign 
(counterintuitive effects), or may simply 
be non-significant. Its regression-derived 
importance will thus be low or not usable. 
Here, one would conclude that the first 
variable is important and the second is not, 
even though both variables have similar 
positive correlations with the dependent 
variable. This is not so good. 

Secondly, customer satisfaction and 
other survey data can sometimes display 
collinearity and multicollinearity. 
Collinearity is said to exist when the 
independent variables are related to 
each other in a bivariate way, while 
multicollinearity exists when some 
independent variables can be explained as 
a linear combination of other independent 
variables. Without experimental data, 
there will always be some degree of (multi) 
collinearity, especially when independent 
variables are measured using the same scale. 
Multicollinearity can be further exacerbated 
by response style biases such as halo3,4 

response style — a cognitive tendency 
to evaluate all features positively based 
on a positive evaluation of an important 
(halo) feature or the reverse (ie to evaluate 
everything negatively) based on a negative 
impression of one feature. 

Multicollinearity is a well-documented 
issue in regression analysis5 and results in 
increased variance around the regression 
estimates potentially leading to sign 
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reversal (ie counterintuitive effects), and 
coefficient instability, which can result 
in non-significant coefficients. The latter 
means that, in a commercial application, 
one must advise one’s client that the topic 
with a non-significant coefficient has 
zero importance. This is hard to sell to 
stakeholders as it undermines the credibility 
of the results.6 

Many different approaches have been 
proposed to mitigate multicollinearity. For 
example, principal components regression 
(PCR) derives orthogonal components 
(ie linear combinations of variables 
with mutually exclusive information) 
from predictor variables, and regresses 
those onto a dependent variable. The 
main disadvantage of this approach is 
that it results in the loss of the original 
variables’ meaning, which is to say that 
the components are linear functions of the 
original variables. This can potentially cloud 
interpretability. Another method sometimes 
suggested for handling multicollinearity is 
ridge regression, which is seeks to reduce 
the variance around regression estimates 
by adding a ridge parameter (k) to the 
regression equation. Finding a value of 
k that minimises the variance around 
coefficients is not a simple task, however, 
and is subject to researcher bias.7 Neither 
of these methods solve the challenge of 
multicollinearity fully. 

In the context of linear regression, the 
Shapley-value approach has been proposed 
as an alternative method to mitigate 
the negative effects of multicollinearity 
and hence get better derived relative 
importance estimates.8–10 Using the 
Shapley-value approach, the relative 
importance of a variable is defined as the 
average importance of that variable across 
all possible linear models that are feasible 
with the set of independent variables (main 
effects only). 

In addition to linear (logistic) regression, 
one may choose various machine-
learning approaches, such as random 

forests (RF) and gradient boosting (GB) 
methods.11–13 These alternative models 
maintain interpretability, require few 
subjective decisions,14 and may offer some 
protection against multicollinearity.15 In a 
linear model, a good fit will only emerge 
when the relationships between the 
independent variables and the dependent 
variable are sufficiently linearly related. 
It may be reasonable to assume a linear 
relationship between a customer’s overall 
satisfaction and their satisfaction with 
the price of the product. However, this 
assumption may be less reasonable when 
identifying the relationship between the 
user characteristics of the customer and 
their overall satisfaction (for example, the 
number of years the customer has been in 
the market for the product may affect their 
satisfaction in a non-linear way). RF and 
GB methods do not have such a strict linear 
relationship constraint and can also simply 
ignore irrelevant features and are invariant 
under scaling,14 both of which make the 
implementation of such models much easier 
than other parametric approaches. In such 
cases, identifying the feature importance 
values through a non-linear model may be 
beneficial. 

The present paper aims to add to 
previous research by making the following 
contributions. First, it is well known that 
multicollinearity is not always a huge 
problem.16 This paper illustrates how relative 
importance estimates are affected in a 
mild multicollinearity situation. The study 
compares the relative importance estimates 
derived from linear regression, the Shapley-
value approach applied to linear regression 
models, to RF, GB trees, and the Shapley-
value method applied to the RF and GB 
modelling approaches. 

In the literature, it has been argued that 
Shapley-value results in better estimates of 
relative importance than estimates based on 
the OLS coefficients.8,9,17 

Shapley-value regression estimates are 
more in line with Pearson correlation 
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coefficients and the results are more stable; 
for example, there will be less variation 
across coefficients across, say, multiple 
waves in a tracking study.18 This is why 
some claim such estimates are better. If they 
truly are better, then this would imply they 
should provide a better representation of the 
data-generating mechanism, which in turn 
would imply the Shapley-value adjusted 
coefficients should yield superior results in a 
k-fold evaluation. 

BOX 1: THE SHAPLEY-VALUE METHOD 
1. Explained variance of a model with only V1 
2. Explained variance of a model with V1 and V2 minus the explained variance of a 

model with only V2 
3. Explained variance of a model with V1 and V3 minus the explained variance of a 

model with only V3 
4. Explained variance of a model with V1 and V4 minus the explained variance of a 

model with V4 
5. Explained variance of a model with V1, V2 and V3 minus a model with V2 and V3. 

The process is repeated until one reaches: 

6. Explained variance of a model with V1, V2, V3 and V4 minus the explained variance 
of a model with V2, V3 and V4. 

Then, the mean explained variance is calculated for each variable (V1, V2, V3, V4), and 
these numbers are re-scaled to 100. 

A method has been derived to adjust the 
linear regression coefficient using Shapley 
regression results; it has also been suggested 
that those coefficients should be used for 
predictions in place of ordinary least squares 
(OLS)-derived coefficients.17 However, 
little is known about how using Shapley-
value affects the predictive power of the 
model. The k-fold predictive accuracy 
metric19 is an indication of how strong the 
model is and, as a result, how confident one 
can be that the results are representative 
of the data-generating mechanism. With 
this in mind, the present study evaluates 
Shapley-value adjusted results in terms of 
k-fold predictive accuracy. (Note that no 
such adjustments currently exist for RF and 
GB). This paper uses a blinded commercial 

dataset to evaluate the Shapley-value 
method. 

THE SHAPLEY-VALUE APPROACH 
The Shapley-value approach is a fully 
recursive modelling approach that 
determines the relative importance 
of predictor variables by running and 
comparing every possible model among 
a set of predictors.15,17 As an example, say 
one wished to understand the effects of 
four predictors (v1, v2, v3, v4) on a single 
dependent variable, Shapley regression 
calculates all possible models involving those 
variables, compares them (as shown in Box 
1), and computes the average across them to 
find the unique contribution of v1 to R2 of 
the whole model. It then repeats that process 
for v2, v3 and v4. 

Shapley-value is a general approach to 
partition the variance explained by the 
various predictors and has several appealing 
features. First, Shapley-value is in essence 
a bagging approach, which is to say it uses 
the mean explained variance from across a 
number of models (see Box 1). This means 
that it captures the effect of a given variable 
without the dominating effect of other 
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independent variables. It also means that it 
is highly unlikely that any given variable 
will obtain a value of zero. Secondly, it is 
a general framework that can be applied 
to different types of analyses, such as 
logistic regression and other machine-
learning approaches. Of course, the exact 
implementation must be adjusted to fit the 
modelling approach at hand. 

As an example, say one wished to 
understand the effects of four predictors (v1, 
v2, v3, v4) on a single dependent variable. 
Shapley regression calculates all possible 
models involving those variables, compares 
them as shown in Box 1, and computes 
averages across them to find the unique 
contribution of v1 to R2 of the whole 
model. It then repeats that process for v2, v3 
and v4. 

There are several appealing features to this 
variance partitioning approach. By averaging 
some statistics across all possible models 
involving a given predictor, one can capture 
the effect of that predictor independently 
from the effects of other related predictors. 

One disadvantage of Shapley-value 
regression is that it is computationally 
intensive. As per Box 1, 15 separate 
regression models must be run to find 
the unique contribution of each of the 
predictors. (The same 15 regression models 
can be used to find unique contributions of 
any of the four variables, the results just need 
to be compared in different ways.) Running 
15 models given four predictors is not that 
hard computationally, but the size of the 
problem increases exponentially as predictors 
are added. The construct for determining 
the number of models, given p predictors is 
2p – 1. Models with 10, 20 and 30 predictors 
require computing roughly 1,000, 1 million 
and 1 billion separate regression models, 
respectively. For larger problems, one 
soon runs out of the computing resources 
required for Shapley regression to be a 
practical approach. 

Previous research has evaluated the 
Shapley-value method in the context of 

identifying customer satisfaction drivers. 
Tang and Weiner18 raised the issue of 
multicollinearity in customer satisfaction 
studies and offered the Shapley-value 
method as a possible solution. Part of their 
reasoning was that customer satisfaction 
studies are often tracking studies (ie they 
are repeated over time, say once or twice a 
year). This creates the following challenge: 
say there are four predictors (v1, v2, v3 and 
v4) and that all of these are highly correlated 
with each other and with overall satisfaction. 
In wave 1, the effect of v1 turns out to be 
statistically significant and has a relatively 
large regression coefficient, while the 
effect of v2 is minimal and has a regression 
coefficient near zero. One would conclude 
from this that v1 is important and v2 is not, 
even though both are substantially correlated 
with the dependent variable. This faulty 
conclusion is driven by multicollinearity 
among the variables in the model. Wave 2 
of the same research might easily reverse the 
relationship between v1 and v2 because of 
very small changes in correlations, which 
would reverse the prior conclusion about 
which variable is most important. From a 
‘communication of insights’ perspective, this 
situation is clearly undesirable as, following 
Wave 1, management will be recommended 
to prioritise V1, but following Wave 2, 
management will be told to forget V1 and 
go improve V2. 

The Tang and Weiner study had 
two additional interesting results. First, 
using data from a commercial customer 
satisfaction study, they found that the mean 
gap between Wave 1 and Wave 2 is much 
smaller when using Shapley-value instead 
of relative importance values derived from 
linear regression. Secondly, they found that 
as sample size decreases, these gaps grow 
much faster for OLS than for Shapley-value 
relative importance values. 

The Shapley-value approach has 
traditionally been applied to linear 
regression. Recently, SHAP has been 
developed, which can help find feature 
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importance estimates for many machine-
learning models, and uses game theory to 
be more efficient than standard Shapley-
value approaches.20 Several variants have 
been proposed; for example, TreeSHAP 
is an approach to perform Shapley-value 
regression on tree-based models that is more 
efficient than standard applications.21 

AN EMPIRICAL COMPARISON AND 
ILLUSTRATION 
A disguised commercial dataset is used 
to illustrate the above arguments. The 
data were collected in 2020 and pertain 
to a business-to-business service. The 
sample size is n = 497, and there is one 
variable measuring overall value, and seven 
independent variables. The Pearson inter-
correlations ranged from roughly 0.40 
to 0.70. The variance-inflation factors 
(VIF) ranged from about 1.4 to about 
2.4 — well below the threshold beyond 
which collinearity is said to be an issue 
(sometimes VIF > 5, sometimes VIF > 
10).16,22 So, this represents a situation of mild 
multicollinearity. 

A linear regression model was run on 
the datatset, and the coefficients used to 
determine the relative importance. The 
authors also ran a Shapley-value analysis for 
RF and GB and used Python code along 
with scikit-learn and shap modules. There 
are several ways Shapley-value regression 
can be implemented. The present analysis 
used the approach described by Mishra.23 

The feature importance estimation 
in random forests and gradient boosting 
methods is generally done the same way as 
decision trees, but instead averaged over 
each tree. The feature importance estimates 
may suffer from some bias.24,25 Here too, 
one can employ a Shapley-value approach 
to get a better approximation of the feature 
importance values. 

Seven sets of relative importance 
values were calculated: (1) derived from 
the regression coefficients, the squared 

standardised Betas are used to re-scale 
the relative importance values; (2) using 
Shapley-value regression; (3) using RF; 
(4) using Shapley-value RF; (5) using GB; 
(6) using Shapley-value GB; and (7) using 
Pearson correlation coefficients between 
dependent variable and the independent 
variables. The results are shown in Table 1. 

All three methods of determining relative 
importance produced comparable rank 
orders among the predictors, especially 
among the top-ranked predictors. This was 
mainly due to these predictors being very 
close to one another in relative importance 
across the methods. As Table 1 shows, the 
difference between the maximum relative 
importance and the minimum relative 
importance varies dramatically across 
methods. The Shapley-value regression 
shows the smallest difference apart from the 
Pearson correlation coefficient. 

If Shapley-value regression is truly 
better (ie it is more likely that this 
approach reveals the true data-generating 
mechanism) then this should translate into 
a model with better predictive accuracy 
than the linear regression model. Shapley-
value numbers can be used to adjust the 
original linear regression numbers and these 
adjusted coefficients can be used to make 
predictions. A comparison is made of both 
linear regression, Shapley-value regression, 
RF and GB on their performance in 
k-fold predictive validation. Currently, no 
procedures exist to Shapley-value adjust RF 
and GB modelling results. The R package 
Carat is used for this. The results are shown 
in Table 2. 

Fit statistics in predicting holdouts were 
similar across the various methods, with 
the OLS method performing only slightly 
better than the Shapley-adjusted regression 
coefficients. RF had the same in-sample fit 
as OLS but performed worse in the k-fold 
validation. GB also had better in-sample 
fit and had the same k-fold validation than 
OLS. So, Shapley-value does perform worse 
than base regression methods. To shed 
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further light on this, Figure 1 plots the actual 
versus predicted y-values. 

Table 2: K-fold validation for linear regression, 
Shapley-value regression, RF and GB (N = 497; 
7 independent variables) 

OLS 

In-sample K-fold validation 

RMSE MAE RMSE MAE 

0.64 0.49 0.65 0.5 

Shapley-value (linear regression) 

In-sample K-fold validation 

RSME MAE RSME MAE 

0.66 0.51 0.66 0.52 

Random forest 

In-sample K-fold validation 

RMSE MAE RMSE MAE 

0.6 0.47 0.66 0.51 

Gradient boosting 

In-sample K-fold validation 

RSME MAE RSME MAE 

0.59 0.48 0.65 0.5 

As one can see in Figure 1, the predicted 
performance across the various methods is 
very similar, except for low value of the 
dependent variable, where the difference 
between Shapley-value seems to deteriorate 
worse relative to the other methods. 

DISCUSSION 
Survey-based customer satisfaction key-
driver analysis research is one of the most 
pervasive applications in marketing research, 
and quite often the customer satisfaction 
line-item is the single biggest budget 
item in the marketing research budget.6 

This is especially true when the customer 
satisfaction study is executed as a tracking 
study. When survey questions capture 
multiple potential sub-components of 
customer satisfaction, management must 
identify the key drivers. In other words, 
management must determine which of 

Figure 1: Actual versus predicted values from the various methods 
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the many sub-components it should focus 
on improving as there is unlikely to be 
sufficient budget or time to improve them 
all. To provide management with insight 
into the relative importance of the sub-
components, researchers often rely on linear 
or logistic regression techniques. As this 
paper has noted, however, this exercise 
is not without its challenges as one may 
encounter collinearity and multicollinearity. 
As multicollinearity increases (ie as indicated 
by VIF > 5, and in some cases even 
sooner),16,22 the risk of misleading relative 
importance estimates increases as well. Tang 
and Weiner11 also showed that this can be 
an even bigger problem in tracking studies, 
as it can flip the relative importances across 
waves, thus compromising credibility. 

This paper presented the results of a 
commercial study, and found that the 
Shapley-value method does a better job 
of evening out the relative importance 
of multiple variables versus the relative 
importance of estimates extracted directly 
from regression coefficients and machine-
learning approaches such as RF and 
GB. Regression and machine-learning 
approaches can be very sensitive to what 
one might refer to as the ‘first come, first 
served’ problem: In a regression model, the 
first variable able to explain a decent chunk 
of the variance will deny other variables 
the opportunity to show their explanatory 
power. The Shapley-value method provides 
insurance against this phenomenon. 

In predictive models, including linear 
regression, RF and GB, the estimates are 
identified in such a way that they optimise 
predictive accuracy (ie explained variance). 
So, this study tested the degree to which 
in-sample and out-of-sample (k-fold 
validation) accuracy compared when based 
on the original regression coefficients vis-à-
vis the Shapley-value adjusted coefficients. 
The results show that the accuracy indeed 
decreases a little bit for the Shapley-
value approach, albeit not by much. 
This is consistent with what others have 

recommended: ie not to adjust the original 
regression coefficients using the Shapley-
value numbers.26 It is worth noting that 
Shapley-value performs worst in the lower 
range of the dependent variable. 

Based on the results of the present 
study, and the results of previous studies, 
it is recommended to use the results of a 
Shapley-value regression alongside the results 
from standard OLS regression, Random 
Forest, or other base regression approach 
when determining the relative importance 
of attributes is a primary objective. Looking 
at Shapley-value holds value in cases of 
severe multicollinearity, but also has value in 
situations with mild multicollinearity. 

In sum, the work by Tang and Weiner,16 

considered in tandem with the results 
described herein, make a strong case for 
the use of the Shapley-value approach to 
determine relative importance of potential 
drivers in key-driver analysis research. 
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